
Allergy. 2023;78:3077–3102.	﻿�   | 3077wileyonlinelibrary.com/journal/all

Received: 10 July 2023 | Revised: 21 August 2023 | Accepted: 27 August 2023

DOI: 10.1111/all.15884  

E A A C I  P O S I T I O N  P A P E R

Eosinophils—from cradle to grave
An EAACI task force paper on new molecular insights and clinical functions of 
eosinophils and the clinical effects of targeted eosinophil depletion

Milos Jesenak1,2,3  |   Zuzana Diamant4,5,6  |   Dagmar Simon7  |   Ellen Tufvesson4  |   
Sven F. Seys8  |   Manali Mukherjee9,10  |   Paige Lacy11  |   Susanne Vijverberg12  |   
Tomas Slisz6  |   Anna Sediva13  |   Hans-Uwe Simon14,15  |   Ilja Striz16  |   
Jana Plevkova17  |   Jurgen Schwarze18  |   Radovan Kosturiak2,19  |   Neil E. Alexis20  |   
Eva Untersmayr21  |   Martina Koziar Vasakova6  |   Edward Knol22,23  |   
Leo Koenderman22,24

1Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
2Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak 
Republic
3Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in 
Martin, Martin, Slovak Republic
4Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
5Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
6Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
7Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
8Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
9Department of Medicine, McMaster University, Hamilton, Ontario, Canada
10The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
11Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
12Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
13Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
14Institute of Pharmacology, University of Bern, Bern, Switzerland
15Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
16Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
17Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
18Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
19Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
20Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
21Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
22Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
23Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
24Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands

© 2023 European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Correspondence
Milos Jesenak, Department of Clinical 
Immunology and Allergology, University 
Teaching Hospital in Martin, Martin, 
Slovak Republic.
Email: jesenak@gmail.com

Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially 
in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, 
regulatory). These versatile cells display both beneficial and detrimental activities 
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1  |  EOSINOPHIL S AND EOSINOPHILIA—
INTRODUC TION

Eosinophils display both beneficial and detrimental activities in im-
munity which balance between maintaining health and homeostasis 
on one hand and causing disease on the other hand. Their role in 
the pathophysiology of various allergic and non-allergic conditions 
and diseases has been recognized for decades.1,2 Consequently, this 
has led to the development of a broad spectrum of therapies tar-
geting eosinophils, either non-specifically by the inhibition of sev-
eral upstream or downstream immune pathways or specifically by 
eosinophil-targeted treatments with biologics.3,4

More recently, several so far unknown physiological functions of 
this cell population have been identified. In the context of these re-
cent insights, eosinophils appear to behave as a double-edged sword 
with important regulatory (immunomodulatory), anti-inflammatory, 
anti-parasitic and anti-viral properties to maintain the homeostasis in 
the body.5,6 Alternatively, the involvement of pro-inflammatory eo-
sinophils in the initiation, progression and persistence of inflamma-
tion with tissue remodelling is well-known and has been documented 
for many decades. Therefore, the eosinophil counts in biological 
specimens from different body compartments may serve as a bio-
marker that reflects the underlying pathophysiology of specific 
diseases, predict treatment success and monitor therapeutic prog-
ress.3,4,7 The precise definition of eosinophilia and the discrimination 
between a truly pathological condition and hypereosinophilia as an 
epiphenomenon is crucial for a correct interpretation and application 
of eosinophils as a biomarker in clinical practice.

In the context of these novel insights, the EAACI taskforce on 
eosinophils, which includes both basic scientists and clinicians, 

aimed to shed more light on the differentiated functions of eosino-
phils to be considered in clinical practice as well as to evaluate the 
potential consequences of eosinophil depletion with targeted ther-
apies. For clinically applicable algorithms aimed at guiding (biologic) 
treatments, we would like to refer to fairly recent reviews, including 
an EAACI task force paper.7-10

2  |  EOSINOPHIL S IN HE ALTH, 
HOMEOSTA SIS AND PROTEC TIVE 
RESPONSES

2.1  |  Origin and life cycle of human eosinophils

Eosinophils are innate immune cells and members of the family 
of white blood cells (WBC).11 These cells were first described by 
Paul Ehrlich in the 19th century.12 Eosinophils have a characteris-
tic bilobed nucleus and large granules that stain intensely with the 
dye eosin, giving the cells their name. The granules contain several 
enzymes and cationic proteins, including peroxidases, lysosomal en-
zyme and major basic protein (MBP). Eosinophils originate from the 
bone marrow where they are produced from a myeloid progenitor 
shared with basophils.13 At the myelocyte stage, the progenitors stop 
dividing and enter into a maturation phase of approximately 4 days 
during which the cells mature into functional granulocytes.14 This 
process is under the control of cytokine receptors (e.g. βc/CD131 
containing receptors: CD116/CD131, CD123/CD131 and CD125/
CD131, binding to GM-CSF, IL-3 and IL-5, respectively15), alarmin 
receptors (e.g. ST2 binding to IL-33)16 and specific transcription fac-
tors (e.g. GATA1/2 and C/EBPα).17 Subsequently, mature eosinophils 
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under various physiological and pathological conditions. Eosinophils are involved 
in the pathogenesis of many diseases which can be classified into primary (clonal) 
and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. 
Depending on the biological specimen, the eosinophil count in different body com-
partments may serve as a biomarker reflecting the underlying pathophysiology and/or 
activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. 
Personalized selection of an appropriate therapeutic strategy directly or indirectly 
targeting the increased number and/or activity of eosinophils should be based on the 
understanding of eosinophil homeostasis including their interactions with other im-
mune and non-immune cells within different body compartments. Hence, restoring as 
well as maintaining homeostasis within an individual's eosinophil pool is a goal of both 
specific and non-specific eosinophil-targeting therapies. Despite the overall favour-
able safety profile of the currently available anti-eosinophil biologics, the effect of 
eosinophil depletion should be monitored from the perspective of possible unwanted 
consequences.
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are released from the bone marrow and can be detected at low 
numbers in the peripheral blood (approximately 50–150 cells/μL of 
blood/1%–3% of total WBC) in homeostasis/health.18 The possibility 
of in situ eosinophilopoiesis has been also described.19 In homeosta-
sis, the half-life of eosinophils in the peripheral blood is unknown but 
is estimated between 11 and 63 h.20-22 Hereafter, little is known of 
the fate of eosinophils.

In health, eosinophils can be detected in several tissues such 
as the gut and adipose tissue with various homeostatic functions 
(Figure  1). In several diseases, particularly those associated with 
allergies, increased numbers of pre-activated or primed eosino-
phils are found in peripheral blood and in inflamed target tissues.25 
Besides classical allergic diseases associated with eosinophilic in-
filtration of the target organs, a broad spectrum of non-allergic 
conditions (e.g. non-allergic eosinophilic asthma and eosinophilic 
bronchitis) associated with high eosinophil counts both in blood 
and tissue exists, for example eosinophilic granulomatosis with 
polyangiitis (EGPA) and chronic rhinosinusitis with nasal polyps 
(CRSwNP). Interleukin-5 (IL-5) is a pivotal cytokine for the life cycle 
of eosinophils as it (i) is a growth factor for eosinophil progenitors, 
(ii) is involved in the mobilization of eosinophils from the bone mar-
row and (iii) plays an important role in their activation and hom-
ing into target tissues.26 Nonetheless, the presence of IL-5 does 
not seem to be solely essential for eosinophil development as IL-5 
knockout mice still have eosinophils27 and a trial with mepolizumab 
(anti-IL-5 monoclonal antibody (mAb)) in patients with eosinophilic 
esophagitis (EoE) showed marked decreases in eosinophils in pe-
ripheral blood and inflamed tissue, but did not affect eosinophil 
numbers in the duodenum.28 Similarly, mepolizumab treatment 

significantly decreased eosinophils in the peripheral blood and spu-
tum29 but failed to substantially reduce airway tissue eosinophils as 
well as their degranulation products (major basic protein, MBP).30 
This may be due to a lack of IL-5 responsiveness of a putative subset 
of resident lung eosinophils.31 It is important to emphasize that the 
concept of resident lung eosinophils in humans still awaits confir-
mation. Alternatively, the low IL-5 responsiveness can by caused 
by downregulation of the IL-5R alpha after homing of eosinophils 
from the blood to the lung in segmental allergen-challenged aller-
gic patients.32 There is growing consensus that IL-5 is important in 
reactive eosinophilia, while it seems less important for homeostatic 
eosinophils within tissues. Detailed and comprehensive overview of 
all the migration and activation factors of eosinophils as well their 
mediators and receptors are summarized in Gigon et al. (2023).33

2.2  |  Functions

Traditionally, eosinophils have been described as important cells of 
the innate immune defence against multicellular parasites, particu-
larly helminths. This is largely based on observations of eosinophilia 
associated with parasitic diseases and of parasite killing by eosin-
ophils and their toxic granules in vitro.34 However, the situation 
may not be as clear cut and may also differ across species, as for 
instance, in mouse models, eosinophils only showed variable con-
tribution to parasite killing.35 The location of eosinophils in human 
and mice are similar, suggesting roles for these cells as identified 
in mice to have similar functions in humans, but this needs to be 
established in future studies. Yet, one of the most important roles 

F I G U R E  1  Eosinophils in health – overview of known functions and biological effects (adapted and modified according to Rodrigo-Munoz 
et al. 2021; Klion et al. 2020; Shah et al. 2020).11,23,24 Created with BioRe​nder.com
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of eosinophils is maintaining tissue homeostasis in different organs 
including the lung, gastrointestinal tract, thymus, adipose tissue and 
uterus. They support normal function of the immune system (im-
munotolerance), support fertility and prevent obesity and bronchial 
hyperreactivity (see Figure 1).24,36,37 This is mainly based on the fact 
that these eosinophils are found in multiple healthy human tissues 
(see for review)5 and in mouse models of metabolism,38,39 endome-
triosis40 and other tissue functions.41 The mechanisms underlying 
these functions will be discussed in more detail below.

2.3  |  Surface receptors

Eosinophils express a multitude of receptors which have been exten-
sively detailed in a recent review by Klion et al. (Figure 2).11 Several 
receptors are important for the specific therapeutic targeting of eo-
sinophils in diseases. Eosinophils express three receptors with a com-
mon β-chain (GM-CSF-, IL-3- and IL-5 receptor) that are all involved 
in the control of the life cycle of the eosinophil, including survival. 

In addition, Siglec-8 expressed by eosinophils is also associated with 
their survival. Several eosinophil receptors are involved in adhesion 
to the endothelium (e.g. L-selectin, Mac-1/CD11b/CD18, VLA-4/
CD49d) and chemotaxis (e.g. CCR3/CD193, C5aR/CD88, platelet-
activation receptor).42 Furthermore, several receptors are associated 
with the activation of eosinophils (e.g. FcγRII/CD32A, FcαR/CD89, 
CR3 – CD11b, glucan receptors).33,43,44,45,46

2.4  |  The concept of priming

Eosinophils are highly cytotoxic because of their intracellular com-
ponents, which may become a potential risk for host tissues if not 
properly controlled. A crucial mechanism herein is pre-activation or 
priming. Under homeostatic conditions, eosinophils are rather re-
fractory cells that may only respond to high concentrations of ac-
tivators, such as opsonized particles. However, when eosinophils 
encounter low concentrations of cytokines or other immune me-
diators in vitro, they can quickly (within 1–15 min depending on the 

F I G U R E  2  Summary of the crucial receptors on surface of the eosinophils and their ligands.11,33 Created with BioRe​nder.com
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priming agent) change to a pre-activated phenotype making them 
highly responsive to these targets.25,47 Pre-activation may also 
occur in patients with eosinophil-mediated disease.48

2.5  |  Effector mechanisms

Eosinophils possess an arsenal of cytotoxic functions that are 
particularly exerted extracellularly: that is, within the synapse be-
tween the cell and its large (i.e. parasite) targets. These functions 
include the abundant production of reactive oxygen species (ROS) 
by a membrane-bound NADPH oxidase (NOX-2),49 degranula-
tion of highly cytotoxic granular proteins (e.g. major basic protein 
[MBP], eosinophil peroxidase [EPX] and human-specific eosinophil 
cationic protein [ECP], or eosinophil-derived neurotoxin [EDN])50 
or peptides (e.g. polycationic peptides) into the synapse and killing 
of extracellular targets by eosinophil extracellular trap (EET) for-
mation.51 In addition, eosinophils are a rich source of a multitude 
of cytokines (e.g. IL-4 and IL-13), chemokines and bio-active lipid 
mediators (e.g. leukotriene C4 and platelet-activating factor) that 
are released upon activation.52-54

2.6  |  Degranulation and EET formation

With eosinophils being relatively inert or refractory while in circu-
lation or in tissues, they must undergo receptor-mediated activa-
tion to release their cytotoxic contents and cause tissue damage. 
Eosinophils are home to a highly unique secretory organelle known 
as the crystalloid granule, which contains MBP at high concentra-
tions leading to the formation of a crystalline core. Contents of 
crystalloid granules can only be released from eosinophils through 
degranulation. Several modes of degranulation occur in eosinophils, 
most falling under the category of classical exocytosis involving 
SNARE-mediated membrane fusion (including compound exocyto-
sis and piecemeal degranulation, the latter mostly seen in allergic 
inflammation).53,55,56,57,58,59 In addition, free eosinophil granules 
may be released as intact, membrane-bound organelles by a form 
of necrotic release known also as cytolysis, which has recently been 
shown to use molecular components of the necroptotic pathway.60 
Eosinophils also release DNA into the extracellular space during 
EET formation. The molecular mechanism of this process is still 
poorly understood.51,61 EET formation occurs independently of de-
granulation although granule proteins have been detected on DNA 
strands.62 The association of granule products with DNA has been 
suggested both prior51,63 and after its release.64 It has been shown 
that EETs add to the viscosity of mucus in the nasal exudates of 
chronic rhinosinusitis (CRS) patients.65 Moreover, EETs have also 
been associated in humans with Charcot-Leyden crystals that have 
been historically associated with eosinophilia.66 In addition, the 
eosinophil-derived Charcot-Leyden crystals in mucus in asthma pa-
tients play a role in allergic inflammation, goblet cell metaplasia, IgE 
synthesis, and bronchial hyperreactivity.67

2.7  |  Eosinophils as part of innate immunity

Apart from being involved in the defence against parasites, eosin-
ophils are also involved in other aspects of immunity. These novel 
functions are currently emerging, and more research is essential to 
confirm their relevance in humans in vivo.

•	 Anti-viral functions: eosinophils are capable of inactivating vi-
ruses. For years, it was known that granular proteins, such as 
eosinophil cationic protein (ECP) and eosinophil-derived neuro-
toxin (EDN), clearly possess RNAse activity that can antagonize 
viral replication in situ. A recent study implied that this anti-viral 
effect is lost in patients with allergic asthma.68 This may ex-
plain why viral infections notoriously precede exacerbations of 
allergic asthma. Eosinophils possess several pathogen-related 
receptors capable of recognition of viral antigens (e.g. Toll-like 
receptors 3, 7, 9 and RIG-I receptor), they produce several cy-
tokines with anti-viral effect (e.g. IL-2, IL-12 and IFN-γ), express 
co-stimulatory molecules (e.g. CD80, CD86, CD28 and CD40) 
and actively participate on viral antigen presentation to CD8 T 
lymphocytes.23,69,70,71 Another interesting area of possible role of 
eosinophils is the global pandemic of COVID-19 caused by novel 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
Several possible defence mechanisms of eosinophils in COVID-19 
were suggested and described, for example direct effect of cer-
tain granular proteins and antigen-presenting functions.69 While 
eosinopenia was identified as a prospective screening, diagnostic 
and prognostic tool, the true role of eosinophils in lung pathology 
pursuant this infection is unclear.72 Eosinopenia was shown to be 
an early convenient diagnostic and screening tool for COVID-19 
infection73,74 and as a prognostic marker of disease severity and 
unfavourable outcome in patients with COVID-19 pneumo-
nia.75,76 Interestingly, eosinophilia (especially in asthmatic pa-
tients treated with inhaled corticosteroids) was associated with 
improved COVID-19 outcome.77 However, studies analysing the 
outcome of COVID-19 in severe asthmatic patients treated with 
biologics showed inconsistent results.78,79

•	 Other anti-infectious effects of eosinophils: The prominent role 
of eosinophils in parasitic infections has been well-established. 
These effects include antigen presentation and modulation 
of T-cell responses. They modulate the production of IgE and 
mucus production from goblet cells. Moreover, their granu-
lar proteins are directly involved in parasites killing and neu-
tralization35,80 On the contrary, eosinophils can also possess 
detrimental effect in certain parasitic infections which can 
contribute to tissue damage.81 Eosinophils also play a role in 
the complex defence against selected bacteria. Although their 
phagocytic activity and bacterial killing is lower compared 
with neutrophils, they contribute to the clearance of selected 
bacteria while their granular proteins and enzymes help to 
neutralize bacterial proteins.82,83 Formation of eosinophil ex-
tracellular traps (stimulated by several mediators, for exam-
ple thymic stromal lymphopoietin in humans) is an important 
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phenomenon in bacterial killing.84 Finally, eosinophils exert 
also anti-fungal activities. They use their versatile CD11b sur-
face receptor for recognition of β-glucan—a major cell wall 
component of fungi.46 Proteases released from fungi activates 
protease-activated receptors in eosinophils followed by the re-
lease of various cytokines. Moreover, eosinophils can probably 
ingest fungal spores.85

•	 Modulation of inflammation and fibrosis: often overlooked are the 
regulatory or even anti-inflammatory properties of eosinophils. 
Even in the context of mast cell-induced inflammation, a concept 
postulated by Austen in 1978, eosinophils can modulate the det-
rimental effects of mast cell activation, for example by oxidatively 
deaminating histamine or enzymatically inactivating other mast 
cell inflammatory mediators.86 In addition, eosinophils have been 
found to be able to suppress T cells and hence the name “regula-
tory eosinophils” was established.87 In addition, eosinophils play 
a pathophysiological role in fibrogenesis by the release of TGF-β 
to stimulate collagen production by parenchymal cells.88 The role 
of eosinophils in tissue remodelling has recently been excellently 
reviewed by Siddiqui and colleagues.89

•	 Tissue homeostasis: some years ago, Lee and colleagues put for-
ward the so-called “Local Immunity and/or Remodelling/Repair 
(LIAR) hypothesis,” implying that eosinophils are an integral part 
of maintaining tissue functions at the sites they reside under 
homeostatic conditions: for example within the gut,24 adipose 
tissue,38,39 cervix and endometrium.40,41 Their homeostatic func-
tions depend on or are associated with the function of the tissue 
where residential eosinophils are found: (human) reproduction 
in the uterus or placenta, glycaemic control in adipose tissue, 
gut function in intestines and adipose tissue remodelling.39,90 
Recently, an intriguing new study even implies eosinophils in 
sustaining physical and immunological fitness during ageing.91 
Unfortunately, the majority of homeostatic functions of eosino-
phils has been described in murine models. It is, therefore, imper-
ative to study which of these murine data can be translated into 
the human situation.

•	 Other regulatory functions: Another area of growing interest in-
volves the role of eosinophils in the defence against certain tu-
mours, particularly those of the gut.92 Although it is too early to 
define such a role, preliminary evidence in gut tumours showed 
that tissue eosinophilia is associated with a favourable outcome 
(see also the part 5.2).93-95

3  |  CL A SSIFIC ATION OF EOSINOPHILIC 
SYNDROMES

Eosinophilia is associated with a wide range of diseases with a 
variety of underlying causes which may affect different organs. 
The diagnostic approach to a wide range of eosinophilic syndromes 
is facilitated by the well-established division into primary and sec-
ondary (reactive) eosinophilic states (Figure  3)94 which have been 
further refined according to updated classifications.96,97 Recently, 

new refined diagnostic criteria and classification of primary eosino-
phil disorders was proposed98:

•	 Familial (hereditary) hypereosinophilia—frequently detected in 
childhood and sometimes associated with immunodeficiencies;

•	 Hypereosinophilia of unknown significance—without familial clus-
tering, underlying pathology, related molecular(genetic) abnor-
malities or hypereosinophilia-driven organ damage;

•	 Secondary (reactive) hypereosinophilia—non-clonal eosinophilia 
driven by overproduced cytokines and

•	 Primary (clonal, neoplastic) hypereosinophilia—driven by neoplastic 
eosinophils.

The classification of secondary eosinophilia is more challenging 
as many clinical situations are associated with eosinophilia that can 
be both part of the pathogenesis of the disease or a bystander phe-
nomenon. As the discrimination between the two is often unknown 
examples are mentioned rather than clear classification criteria. The 
basic classification of eosinophilia based on the international con-
sensus is provided in Table 1. In the current review, we will focus 
on eosinophilia mainly in the context of respiratory conditions and 
related pathologies.

4  |  EOSINOPHIL S A S A BIOMARKER TO 
AID DIAGNOSIS AND PREDIC T AND/OR 
MONITOR TRE ATMENT RESPONSE

4.1  |  Sampling techniques for eosinophils and 
related biomarkers from different compartments

Eosinophils can be detected in several body compartments, which 
include both fluids and tissues. Across these compartments, the 
presence of eosinophils may vary within individuals, depending 
on factors such as age and different sampling techniques reflect 
the inflammation in defined locations.103 For the assessment and 
quantification of eosinophils in eosinophilic pulmonary syndromes, 
for example certain asthma phenotypes, bronchial biopsies have 
been traditionally considered the ‘gold’ standard as they provide 
information on the inflammatory and structural components of eo-
sinophils and their spatial relationship within the lung tissue. Other 
endoscopically retrieved lung specimens include bronchoalveolar 
lavage (BAL) fluid, bronchial wash (BW) and bronchial brushings 
(BB).104 These techniques allow qualification and quantification 
of the cellular components (including gene expression analysis) 
often combined with soluble fractions. However, their invasive-
ness and other drawbacks, such as the substantial dilution, nega-
tively affect reproducibility (esp. BAL). Other biases including site 
selection (biopsies) or the risk of a pneumothorax (esp. BB), have 
driven the focus toward less invasive sampling methods including 
sputum analysis, sinonasal samplings, peripheral blood sampling 
and exhaled air analysis.7,105 However, within individual patients, 
blood eosinophils show substantial variability over time,106 while 
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    |  3083JESENAK et al.

eosinophil numbers may vary across different lung specimen107 as 
well as across different body compartments.30 Hence, data from 
sampling sites should be interpreted cautiously and in the context 
of treatment.108,109

4.1.1  |  Blood eosinophils

The determination of eosinophil counts in peripheral blood is fast 
and inexpensive allowing assessment of the activity of allergic 

F I G U R E  3  Schematic classification of eosinophilia. Created with BioRe​nder.com
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diseases, parasitic infections and other eosinophilic disorders. The 
commonly used ‘normal’ values for eosinophil counts in blood are 
less than 0.30–0.45 × 109/L (i.e. 300–450 cells/μL) when includ-
ing atopic subjects; however, ranges may vary among different 

laboratories (usually between 50 and 500/μL (Table 2).98,110 Infants 
and toddlers have physiologically higher upper threshold.18,111 
Moreover, certain studies with biologics defined blood eosino-
philia even at a lower threshold, for example ≥150 cells/μL or ≥250 
cells/μL. A recent large study in the general population showed 
that male sex, younger age, current smoking, obesity and the pres-
ence of metabolic syndrome were associated with higher blood 
eosinophil counts; when combined with the diagnosis of asthma, 
COPD and atopy, these factors were additive.18 When excluding 
these factors, blood eosinophil median values were 120 cells/
μL in healthy males and 100 cells/μL in healthy females, respec-
tively. Numbers of blood eosinophils are known to be affected by 
diurnal variations and tend to be higher late at night.112 Circadian 
regulation of eosinophils seems to be at least partially controlled 
by type 2 innate lymphoid cells (ILC2) cells.113 On the contrary, 
physical exercise may reduce the numbers of circulating eosino-
phils.114 Although blood eosinophil counts do not completely re-
flect airway eosinophilic inflammation, particularly in children with 

TA B L E  1  Modified schematic classification of eosinophilic syndromes and associated conditions.96-102

Primary (clonal) eosinophilia Group

Secondary (reactive) eosinophiliaa

Group Examples

Myeloid and lymphoid neoplasms with 
gene rearrangement of PDGFRA, 
PDGFRB or FGFR1 or with PCM1-JAK2, 
ETV6-JAK or BCR-JAK2

Allergic disorders Bronchial asthma, atopic dermatitis, contact dermatitis, chronic allergic rhinosinusitis 
with/without nasal polyposis, allergic acute and chronic urticaria

Chronic eosinophilic leukaemia not 
otherwise specified including cases 
with ETV6-ABL1, ETV6-FLT3 or 
BCR-JAK2

Infectious diseases Parasitic, bacterial, viral and fungal infections

Atypical chronic myeloid leukaemia with 
eosinophilia

Dermatoses 
(non-allergic)

Wells syndrome (eosinophilic cellulitis), pemphigus vulgaris, Gleich syndrome 
(episodic angioedema with eosinophilia), chronic spontaneous urticaria

Chronic myelomonocytic leukaemia with 
eosinophilia

Gastrointestinal 
disorders

Primary gastrointestinal eosinophilic disorders (esophagitis, gastritis, enterocolitis), 
chronic pancreatitis, inflammatory bowel diseases, coeliac disease

Chronic myeloid leukaemia in accelerated 
phase or transformation

Vasculitis Polyarteritis nodosa, eosinophilic granulomatosis with polyangiitis (Churg-Strauss 
syndrome)

Acute myeloid leukaemia with eosinophilia Rheumatic diseases Systemic lupus erythematosus, rheumatoid arthritis, eosinophilic fasciitis (Shulman 
diseases)

Acute lymphoblastic leukaemia (only if 
eosinophils demonstrated to be a part 
of the neoplastic clone)

Respiratory non-allergic 
diseases

Acute and chronic eosinophilic pneumonia (incl. Löffler syndrome), allergic 
bronchopulmonary aspergillosis/mycosis, sarcoidosis, eosinophilic bronchitis

Systemic mastocytosis Neoplastic disorderse Solid tumours, systemic mastocytosis, lymphomas and acute lymphoblastic 
leukaemia, Langerhans cell histiocytosis

Hereditary (familial) hypereosinophilia Drug induced 
eosinophilia

Antibiotics, anticonvulsants, antimalarial, ACE-inhibitors, non-steroidal anti-
inflammatory drugs

Idiopathic hypereosinophilic syndromeb Primary 
immunodeficiencies

Hyper-IgE syndromes, DOCK8 deficiency, Omenn syndrome, Commel-Netherton 
syndrome

Idiopathic (hyper) eosinophiliac Miscellaneous Chronic graft-versus-host disease, atheroembolic disease, IgG4-related diseases

Overlap hypereosinophilic syndromed

aIn most cases, eosinophilia may be triggered by eosinopoietic cytokines.
bPersisting eosinophilia (≥1.5 × 109/L) for at least 6 months associated with tissue damage. If tissue damage is absent, preferred term is idiopathic 
hypereosinophilia.
cExclusion of the following: reactive eosinophilia, lymphocyte-variant hypereosinophilia, chronic eosinophilic leukaemia not otherwise specified, 
myeloid malignancies associated with eosinophilia, eosinophilia-associated myeloproliferative neoplasms or acute myeloid/lymphoid leukaemia.
dEosinophilic disease restricted to a single organ system accompanied by peripheral eosinophilia ≥1.5 × 109/L.
eDisorders in which the eosinophils are not part of neoplastic clone.

TA B L E  2  Levels of eosinophils in different body 
compartments.18,98,110,111

Cut off

Blood [cells/μL]

Normal in healthy males <120

Normal in healthy females <100

Eosinophilic asthma >150

Induced sputum [%]

Normal in healthy individuals <2–3

Cerebrospinal fluid [cells/μL]

Normal in healthy individuals <10
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severe asthma, in patients with high dose systemic corticoster-
oids or other immunosuppressants,109,115 blood eosinophilia may 
be helpful for identification of eosinophilic asthma phenotype at 
a threshold of ≥150 cells/μL.116,117 Published cut-off values pre-
dicting clinical response to anti-IL-5 biologics are >150 cells/μL for 
mepolizumab, >300 cells/μL for benralizumab and >400 cells/μL 
for reslizumab,118 respectively. It needs to be emphasized that eo-
sinophil numbers do not tell the whole story as the cells can exhibit 
different stages of (pre)-activation and/or different phenotypes. 
Combining eosinophil numbers and their phenotypes might pro-
vide better information on the role of eosinophils in disease. This 
has recently been reviewed.119,120

4.1.2  |  Sputum analysis

Assessment of airway inflammation is a pivotal part of diagno-
sis, phenotyping and clinical management of patients with com-
plex airways disease.121 Changes in sputum cellular indices are 
reproducible, reliable122 and responsive to anti-inflammatory 
treatments.123-126 Using sputum as a strategy to guide treatment 
in asthma has been shown to lower the risk ratio of exacerbations 
and the total number of exacerbations requiring prednisone burst, 
when compared to just clinical guidelines.123,127 Since then, sputum 
measurements have been extended beyond cell counts.128 Reports 
from different research laboratories globally have successfully and 
reproducibly measured a number of fluid-phase mediators, type 
2 cytokines, activation markers, gene signatures, miRNA gene 
network,129-134 flow cytometric-based cell surface receptor ex-
pression and phagocytosis135,136 and microbiome, that are associ-
ated with different disease populations, indices of disease severity 
as well as treatment effects.137,138

Eosinophilia can be detected in pulmonary diseases like asthma, 
eosinophilic pneumonias and hypersensitivity pneumonitis and id-
iopathic pulmonary fibrosis by means of induced sputum, or bron-
choscopic methods like bronchoalveolar lavage, bronchial and 
transbronchial biopsies, cryobiopsy and, if needed, also by surgical 
lung biopsy.139-143

Gene expression patterns related to eosinophils have been 
quantified from sputum of asthma patients and in some stud-
ies were well-correlated with blood eosinophils.144-146 Although 
spontaneously coughed up sputum can be obtained easily and 
can provide useful information (esp. in COPD),147 induced sputum 
generally yields better quality, higher cell yield and more repro-
ducible samples.148,149 Presently, there are two widely used stan-
dardized sputum protocols with different processing/analysis 
techniques, that is the entire/whole sample method and the plug 
selection method. Both methods yield reproducible inflamma-
tory cell counts (eosinophils, neutrophils), the former, however, 
typically has greater proportions of squamous epithelial cells and 
lower cell viability placing some limitations on differential cell 
count interpretation.150,151 Sputum eosinophilia is usually defined 
as >2% or ≥3% of inflammatory cell counts7,124,152 and in patients 

with asthma (across severities) has been found to be usually well-
correlated with baseline blood eosinophils.117,153

4.1.3  |  Sinonasal sampling techniques

Several studies showed the usefulness of eosinophil measurements 
in sinonasal samples for evaluating the presence of an allergic or 
type 2 inflammatory component in rhinitis and chronic rhinosinusitis 
(CRS).154-156 To this end, nasal lavage (NAL), nasal secretion sampling 
with sponges, nasal brushes (NAB), nasal swabs and nasal biopsies 
(NB) are the most commonly applied techniques with varying ease 
of sampling, processing and analysis.105,157,158

In patients with asthma, nasal eosinophilia has been used as an 
indicator of eosinophilic asthma159 and appeared to better predict 
airway (sputum) eosinophilia than blood eosinophil counts.160

4.1.4  |  Other tissue samplings

Eosinophilic infiltration in cutaneous tissue obtained by skin bi-
opsy can be found in numerous pathologic conditions, for exam-
ple atopic dermatitis, eosinophilic cellulitis, granuloma faciale, 
eosinophilic pustular folliculitis, recurrent cutaneous eosinophilic 
vasculitis, chronic spontaneous urticaria and other diseases even 
in the absence of blood eosinophilia.100,161,162 In atopic derma-
titis, intact eosinophils in skin are rare, but significant deposits 
of eosinophil-derived proteins are indicative of their local activa-
tion.163 Although rarely a major diagnostic criterion, the presence 
and the number of eosinophils in skin biopsies is often used in 
the differential diagnosis of drug-induced skin eruptions versus 
acute graft versus host disease (GvHD), despite some conflicting 
evidence.164-166

Eosinophilia in cerebrospinal fluid (CSF) has been reported (i.e. 
≥10 eosinophils/μL or ≥10% of total leukocyte count) in a number 
of conditions including eosinophilic meningitis—a rare condition 
caused by helminthic infections,167 bacterial or fungal meningitis, 
hypereosinophilic syndrome (HES) and in children with CSF shunts. 
In the latter condition, CSF eosinophilia appeared a risk factor for 
shunt malfunction.168,169

High eosinophil counts in umbilical cord have been associated 
with intra-amniotic infections. While in healthy state the foetal 
white cell pool is relatively small, in severe infections, immature neu-
trophils and even eosinophils may be recruited to umbilical and cho-
rionic vessels causing umbilical vasculitis.170

4.2  |  Activation markers and surrogate 
biomarkers of eosinophilia

Eosinophil cationic protein (ECP) is the most commonly used clinical 
biomarker for eosinophil activity, and can be quantified in, for ex-
ample plasma, serum, saliva, BALF, sputum and nasal lavage.171,172 It 
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is a useful tool in assessing asthma severity and in monitoring anti-
inflammatory asthma therapy.

When using ECP as a biomarker, one should be aware that ECP 
levels are affected by age, smoking, circadian rhythm and seasonal 
variation. Serum ECP has been successfully used in guiding anti-
inflammatory therapy in childhood asthma.173 Furthermore, poly-
morphisms have been identified in genes coding for ECP and some 
of them have been shown to be associated with asthma174 and al-
lergic symptoms.175 Other polymorphisms cause lower ECP levels, 
and specific genotyping could therefore be recommended in future 
asthma studies which include ECP measurements.176

Measurement of eosinophil peroxidase (EPX) and eosinophil-derived 
neurotoxin (EDN) in either blood or urine may be an alternative to ECP 
measurements in blood as a reflection of eosinophil turnover and ac-
tivity.177,178 In asthma, increased EDN levels have been observed in 
both blood and urine with further increases in symptomatic patients, 
while levels were reduced in response to ICS.179 Furthermore, EDN 
is a promising candidate particularly in children: serum levels have 
been shown to correlate with disease severity180 and urine levels 
can predict the development of asthma in wheezing children.181 EPX 
in sputum, nasal and pharyngeal samples was reported to be a spe-
cific marker of eosinophil activity comparable to ECP182 and associ-
ated with asthma severity.177,183 In addition, some studies imply that 
both granule proteins are expressed also by neutrophils, although in 
much lower amount.182,184

Although currently not used clinically and requiring flow cyto-
metric measurements, upregulated expression of many cell surface 
receptors and cell surface integrins on blood, sputum and BAL eo-
sinophils are markers of eosinophil activation as is a decrease in side 
scatter activity upon eosinophil degranulation (Figure 2).185

Validating markers of eosinophilia in relevant biological fluids 
is essential given the advancement of phenotype/endotype-driven 
precision medicine. These biomarkers are not only essential for 
choosing relevant treatment but also for monitoring treatment 
response.186

4.3  |  Fractional exhaled nitric oxide and its 
correlation with eosinophils

Fractional exhaled nitric oxide (FeNO) is a point-of-care bio-
marker of type 2 inflammation which can be simply and non-
invasively measured in exhaled air from both adults and children 
(>4 years).187 Given its correlation with blood eosinophils188 and 
responsiveness to corticosteroids,189,190 FeNO has been consid-
ered a surrogate marker of eosinophilic airway inflammation for 
many years.191 Despite a modest relationship with sputum eo-
sinophils,116 both biomarkers reflect different, partly overlapping, 
inflammatory pathways underlying several chronic respiratory 
disorders including asthma. In line with their different origins, bio-
logics targeting eosinophils (i.e. anti-IL-5 monoclonal antibodies) 
failed to show a decrease in FeNO levels despite a substantial re-
duction in blood and/or airway eosinophils.192,193 The discrepancy 

between FeNO, sputum and blood eosinophilia was described by 
many authors.194,195 This discrepancy could be explained by the 
differences between allergic and non-allergic eosinophils asth-
matic phenotypes and different sources of FeNO in classic aller-
gic and T2-high phenotype. Different sources and the fact that 
all three biomarkers reflect different underlying mechanisms (or 
in the case of sputum vs. peripheral blood different locations) is 
the most important point, especially while, for example anti-IL5 
strategies decrease significantly peripheral eosinophils and not 
FeNO and, for example dupilumab decreases FeNO and not so 
much peripheral blood eosinophils.194

Unsurprisingly, recent analyses showed an overall superior 
sensitivity and specificity for blood eosinophils compared with 
FeNO in identifying airway eosinophilia (defined as sputum eosin-
ophils ≥3%).196 However, for overall asthma management including 
the prediction of asthma exacerbations, both blood eosinophils 
and FeNO appeared to have additive prognostic value.197 More-
over, in patients with severe asthma, FeNO could predict the re-
sponsiveness and clinical effect of selected biologics, especially 
dupilumab.198

4.4  |  Eosinophilia as readout for immune responses 
associated with cancer

Eosinophilia has also been observed in some cancers, including 
breast, ovarian, cervical, prostate, colo-rectal, oral squamous and 
some haematological cancers (e.g. Hodgkin's lymphoma). The origin 
and the role of increased eosinophil numbers seem to differ across 
different cancers and vary from tumour-stimulating to anti-tumour 
activity.199 The tumoricidal function of eosinophils is mainly in solid 
tumours and can be mediated by α-defensins, TNF-α, granzymes 
A and IL-18,200,201 while promoting regulatory T cells treatment is 
primarily directed at the main pathology.202 Despite these data, it 
is still unclear whether this cancer-associated eosinophilia is an in-
nocent bystander process or whether eosinophils play a causative 
role in the pathogenesis of these tumours. It is also possible that 
at least in part eosinophilia can be caused by the treatment of the 
tumour rather than the tumour itself.203 It is, however, important 
to emphasize that eosinophils might play a positive role in immune 
therapy at least in the treatment of certain cancers. This topic has 
been addressed in a recent review by Grisaru-Tal et al.92

5  |  EOSINOPHILIA A S THER APY- GUIDING 
TOOL FOR TARGETED ANTI- EOSINOPHILIC 
TRE ATMENTS

The treatment of eosinophil-associated diseases depends on the 
underlying pathomechanism that is whether eosinophilia is due to 
(i) a primary or clonal process or (ii) a secondary, reactive one.100,204 
Eosinophil-targeted therapies are aimed to reduce the eosinophil-
associated inflammation and consequently, to alleviate clinical signs 
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and symptoms and to allow tapering off oral corticosteroids. Addition-
ally, clinical trials with eosinophil-targeted treatment helped to provide 
novel information on the role of eosinophils and mediators either acting 
on/or produced by eosinophils in human diseases and homeostasis.

5.1  |  Treatment of clonal eosinophilic disorders

The most common molecular defect identified in patients with 
clonal eosinophilic disorders is the FIP1L1-PDGFRA gene fusion 
that results in constitutive, ligand-independent PDGFRA tyrosine 
kinase activity.205 For patients with PDGFR-associated disease, the 
tyrosine kinase inhibitor (TKI) imatinib is first-line therapy and pro-
duces rapid and dramatic clinical and haematological responses with 
molecular remission (no detectable FIP1L1-PDGFRA) typically ob-
served within 2–3 months of treatment.206-208 In order to overcome 
imatinib resistance, second- and third-generation TKIs have been 
developed. Of those, midostaurin and ponatinib proved to be effec-
tive against D816V, the most common KIT mutation in patients with 
systemic mastocytosis who may also present with eosinophilia.209 
Additional therapeutic strategies have been outlined by Radonjic-
Hoesli et al. (2015).204

5.2  |  Treatment of reactive eosinophilic disorders

The therapeutic approaches for reactive eosinophil disorders (e.g. 
eosinophilic asthma, rhinosinusitis) are either to directly target eo-
sinophils or to inhibit cells and mediators stimulating eosinophilia and 
eosinophil activation. So far, corticosteroids (CS) via topical, inhalant 
or systemic route have widely been used as first-line therapy and may 
control eosinophilic inflammation in many cases. CS exert direct ef-
fects on eosinophils, for example by inducing eosinophil apoptosis or 
indirect ones by affecting inflammatory and tissue cells interacting 
with eosinophils resulting in a decreased production, recruitment and 
activation of eosinophils. Long-term use of especially systemic ster-
oids causes harmful side effects.210,211 This underscores the benefits 
of eosinophil-targeted therapies in these conditions.212-214

5.2.1  |  Direct anti-eosinophil-targeted therapies

The past two decades have witnessed a tremendous boost in the de-
velopment of anti-cytokine and anti-cytokine receptor monoclonal 
antibody therapies for the treatment and management of eosino-
philic diseases.

Anti-IL-5 monoclonal antibodies—mepolizumab, reslizumab
The mounting popularity has remained with targeting the IL-5 path-
way given its prime role in orchestrating eosinophil biology from mat-
uration to mobilisation to degranulation.61,215 Anti-IL-5 monoclonal 
antibody therapy with mepolizumab or reslizumab resulted in a signifi-
cant improvement of clinical signs and symptoms in the eosinophilic 

subtype of asthma,216-218 chronic rhinosinusitis with nasal polyps 
(CRSwNP)219 and hypereosinophilic syndrome,220-223 whereas trials 
in atopic dermatitis,224 eosinophilic esophagitis225 and bullous pem-
phigoid226 revealed missing or moderate effects.

Effects reported on anti-IL-5 therapy with mepolizumab or resli-
zumab in patients with severe eosinophilic asthma, consist of re-
duced numbers of exacerbations, improved severity and quality of 
life scores, decreased numbers of blood and sputum eosinophils, sys-
temic corticosteroid sparing effects and improvement in lung func-
tion.217,218,227,228 In initial studies, mepolizumab failed to significantly 
improve clinical features of asthma (allergen-induced late response, 
airway hyperresponsiveness, FEV1 and peak flow recordings) as pa-
tients had not been selected for eosinophilic asthma.29,229 Following 
a paradigm shift, Nair et al. (2009)218 and several other investigators 
confirmed clinical efficacy in patients with eosinophilic asthma.229 
Mepolizumab is currently indicated as add-on therapy for adults and 
children (age ≥6 yrs.) with severe uncontrolled eosinophilic asthma, in 
two dosing regimens.230 It should be pointed out that the children 
with severe asthma have been underreported in clinical trials with 
biologics (e.g. 1%–6% of the study populations with mepolizumab) 
and available efficacy and safety data for the paediatric population 
are scarce.231 In patients with CRSwNP, another chronic type 2 re-
spiratory condition often coinciding with severe asthma, increased 
IL-5 levels in nasal secretions at baseline predicted clinical response 
to anti-IL-5 treatment with reslizumab.232 However, clinical efficacy 
of anti-IL-5 targeting treatment has so far only been established 
for mepolizumab233,234 in large number of patients with recurrent 
refractory CRSwNP with or without concomitant asthma, and con-
sequently, this biologic has been implemented into concurrent treat-
ment algorithms.235-238 Clinical efficacy in the treatment of CRSwNP 
was also confirmed for other biologics: that is omalizumab239 and 
dupilumab.237,240,241

The absent or moderate clinical efficacy of anti-IL-5 therapy in 
other eosinophil-associated diseases (e.g. atopic dermatitis, eosin-
ophilic esophagitis, bullous pemphigoid) appeared to be related to 
the incomplete reduction in eosinophil numbers within the target 
tissues.30,225,226 In line with the initial studies in asthma,29,30 a phe-
notype selection toward a more eosinophil-driven disease might 
be required to reach clinically relevant effects using these targeted 
treatment modalities. Independently of efficacy, in all clinical studies 
a significant reduction and even full depletion of blood eosinophils 
has been observed.29,217,226 In addition to blood eosinophils, mepoli-
zumab decreased the numbers of mature eosinophils within the bone 
marrow by 70%, as well as myelocytes and metamyelocytes by 37% 
and 44%, respectively, without affecting the numbers of blood and 
bone marrow CD34+, CD34+/IL-5R alpha+ cells (progenitors of eosin-
ophils) and/or eosinophil/basophil colony-forming units.242 To note, 
mepolizumab did not alter the physiological infiltration of eosinophils 
in the duodenal mucosa of patients with eosinophilic esophagitis.28 
Of similar interest, despite decreasing eosinophil (cells express-
ing IL-5Rα) numbers following a segmental allergen challenge in al-
lergic asthmatics, mepolizumab (750 mg subcutaneously) had only 
a limited effect on airway activation markers.243 In line with these 
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observations, mepolizumab at the currently recommended dose 
(100 mg subcutaneously q4wk) does not completely abolish sputum 
eosinophils or any other cellular source of type 2 cytokines such as 
the innate lymphoid cells type 2 (ILC2) despite a significant reduction 
in blood eosinophils.244 Recent evidence from real-life studies sug-
gests similar findings where both mepolizumab and reslizumab can 
normalize blood eosinophil levels, and yet 43% of patients respond 
suboptimally.245 Approximately 78% of these suboptimal responders 
show sputum eosinophilia despite (at least) 4 months of therapy.108 
In the MEX study, asthma exacerbations while on mepolizumab were 
eosinophilic in nature, as evident by sputum eosinophilia >2% and 
high FENO > 50 ppb. Such persisting eosinophilia may well account 
for the lack of disease-modifying effects of (subcutaneous) anti-IL5 
strategy.246

Other studies, however, showed, that sputum eosinophil count 
may not represent a more useful biomarker than blood eosinophils 
for predicting treatment response to mepolizumab.247 Of note, re-
cent data showed that IL-5 may influence airway epithelium cells with 
negative impact on barrier function and immune capability.248 Inter-
estingly, in patients with eosinophilic asthma and nasal polyposis with 
AERD, mepolizumab 100 mg s.c. was able to induce epithelial tight 
junction-related genes. Biological treatment effects not exclusively 
due to anti-eosinophil activity may thus be contributing to mecha-
nisms of treatment response in asthma.249 As disease modifying 
asthma therapies should target fundamental pathobiological mech-
anisms involved in asthma,250 for example immune epithelial barrier 
disruption,251 it remains to be seen how targeting of eosinophils—
important players in Th2 immunity—truly contributes to achieve dis-
ease modification (keeping in mind the LIAR hypothesis and emerging 
concept of different eosinophilic subsets, see below).

According to published data on anti-IL-5 strategies so far, there 
does not seem to be an increased risk of neoplasms, infections and/
or autoimmunity in humans.252-258 In long-term studies, both me-
polizumab and reslizumab showed a positive benefit–risk profile 
without evidence for specific adverse event patterns in neither 
paediatric nor adult patients.253,254,255,259 Respiratory tract infec-
tion, headache and bronchitis were the most frequently reported 
adverse events based on an open-label long-term extension safety 
study in patients with severe eosinophilic asthma (COLUMBA).260 
Whereas this was an open-label study, it could not be determined if 
the respiratory tract infections were increased due to treatment or 
typical of the disease. Anti-drug antibody (ADA) responses, which 
mainly were transient in adults, but no neutralizing antibodies have 
been observed in adults or children.259,260 Nevertheless, the im-
mune system of children is still under development and long-term 
effects of IL-5 inhibition remain unclear, this warrants further inves-
tigation and long-term monitoring.

Anti-IL5R monoclonal antibody—benralizumab
Benralizumab exerts dual function by interfering with IL-5 binding 
to the IL-5 receptor alpha chain and promoting antibody-dependent 
cell-mediated cytotoxicity (ADCC) with consequent enhanced eo-
sinophil apoptosis.261 In adult patients with severe, uncontrolled 

eosinophilic asthma, benralizumab as add-on therapy decreased 
the annual exacerbation rates, improved lung function and asthma 
symptom scores, as well as reduced oral CS use.199,262,263 However, 
in patients with mild to moderate, persistent asthma, no clear rela-
tionship between blood eosinophil counts and FEV1 was observed 
following benralizumab therapy.264 Benralizumab was reported to 
significantly reduce both mature eosinophils and eosinophil progen-
itor cell numbers in peripheral blood, airway mucosa/submucosa, 
sputum and bone marrow (as well as peripheral blood basophils) in 
patients with (severe) eosinophilic and/or corticosteroid-dependent 
asthma.265-267 Based on two smaller early phase studies in asthma, in 
parallel with reduced blood eosinophil numbers, serum eosinophil-
derived neurotoxin (EDN) and eosinophil cationic protein (ECP) lev-
els decreased upon benralizumab.268 Interestingly, while no changes 
in TNF-α or IFN-γ levels were observed, serum IL-5, eotaxin/CCL11 
and eotaxin-2/CCL24 levels increased after benralizumab admin-
istration.268 Despite an overall similar reduction in peripheral eo-
sinophils across participating patients with OCS-dependent, severe 
eosinophilic asthma, in a phase III clinical trial with add-on benrali-
zumab, 20% of patients were unable to reduce their corticosteroid 
dose without losing asthma control.263 In a real-life setting, sub-
optimal response to benralizumab was observed in 27% out of 74 
severe asthmatics who were clinically prescribed this biologic. The 
majority of exacerbations were non-eosinophilic, associated with 
airway infections and reduced NK cells.269 Of note, add-on ben-
ralizumab compared with placebo failed to significantly lower the 
annualized rate of COPD exacerbations in two large studies (GALA-
THEA and TERRANOVA) in patients with moderate to severe COPD 
with blood eosinophilia,270 while only a subgroup of responders 
could be characterized by pooled data analysis.271 In this context, 
it should be noted that the role of eosinophils may differ between 
COPD and asthma.272

In patients with PDGFRA-negative hypereosinophilic syndrome 
(HES), benralizumab treatment resulted in a significant clinical im-
provement with suppression of bone marrow and tissue eosinophilia 
with the possibility of withdrawal of background therapies.221

Long-term observation of patients on benralizumab treatment 
revealed no differences in the rate and pattern of adverse events 
and in particular severe adverse events associated with infections as 
compared to the placebo groups.273 However, recent analysis of the 
exacerbations in patients treated with benralizumab showed that a 
sub-optimal response (SR) to therapy was associated with the pres-
ence of various respiratory infections (e.g. by Moraxella catarrhalis, 
Streptococcus pneumoniae, Staphylococcus epidermidis, Haemophilus 
influenzae, Pseudomonas aeruginosa and metapneumovirus). Patients 
treated with mepolizumab or reslizumab showed lower frequency of 
infections compared with benralizumab-treated patients. Sub-analysis 
of the patients with zero eosinophils in sputum during the benrali-
zumab treatment showed still higher incidence of respiratory infec-
tions82,273 Moreover, the use of the IL-4 receptor-α blocking antibody 
dupilumab was associated with less respiratory infections (and hence 
less use of anti-infective medication) in patients with moderate-to-
severe asthma or severe CRSwNP.274 Therefore, it is key to consider 
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all potential consequences of manipulating the pool of eosinophils, 
which likely contains inflammatory, regulatory (homeostatic) and res-
idential cells with distinct functions and activities. Whether dramatic 
depletion of eosinophils would impose long-term consequences on 
the organism in terms of side effects (especially infections) should be 
followed up and monitored (see also chapter 5.3).

5.2.2  |  Other biologics affecting eosinophilic  
diseases

The first biologic used to treat allergic diseases (including asthma) 
was anti-IgE (see below). Later evidence from among others the 
U-BIOPRED (Unbiased Biomarkers for the Prediction of Respira-
tory Disease Outcomes) program applying sputum transcriptomics 
strongly suggests that in addition to IL-5 (and IgE), other cytokines 
such IL-33, thymic stromal lymphopoietin (TSLP) and IL-13 may be 
mediators of/contributors to eosinophilia.275 In addition, there are 
additional markers associated with eosinophilic conditions because 
of certain pathomechanisms which may directly or indirectly contrib-
ute to the development of eosinophilia and associated diseases.

Anti-IgE monoclonal antibody—omalizumab
Omalizumab forms complexes with free IgE blocking its binding to 
receptors on mast cells and basophils. Since eosinophils do not ex-
press functional high-affinity IgE receptor (FcεRI), omalizumab seems 
to exhibit indirect effects in eosinophilic diseases. Omalizumab has 
been proven effective in allergic/IgE-mediated diseases including 
asthma as it reduces the frequency of exacerbations and decreases 
the use of CS in paediatric and adult patients.276-278 Approximately 
60% of asthmatic patients respond to treatment.279 In addition to 
a reduction in serum IgE and IgE+ cells within the airway mucosa, a 
decrease of overall type 2 inflammation including eosinophils, CD3+, 
CD4+ and CD8+ T lymphocytes; B lymphocytes, cells positive for the 
high-affinity Fc receptor for IgE in the airway mucosa has been re-
ported following omalizumab treatment.280 An additional treatment 
response has been observed on the IgE+ antigen-presenting cells, 
that is monocytes, plasmacytoid DCs, limiting the facilitated antigen 
presentation and activation of T cells.281 In allergic and non-allergic 
patients with CRSwNP and comorbid asthma, anti-IgE therapy de-
creased the size of nasal polyps and yielded beneficial effects on air-
way symptoms (nasal congestion, anterior rhinorrhoea, loss of sense 
of smell, wheezing and dyspnoea).238 A comprehensive review of 25 
RCTs reports that patients with severe uncontrolled allergic asthma 
with high blood eosinophil counts and high FeNO, indicative of on-
going type 2/eosinophilic airway inflammation had greater reduction 
in asthma exacerbations upon treatment with omalizumab.282 There-
fore, prescription of omalizumab to allergic (atopic) and clearly eosino-
philic asthmatics seems justified when targeted eosinophil-depleting 
treatment options are unavailable. However, omalizumab was unable 
to curb airway eosinophilia in more severe asthma, irrespective of 
blood eosinophil counts or atopy status.283 Indeed, severe asthmat-
ics who exacerbated on omalizumab, when switched to mepolizumab 

(targeting IL5) showed significant clinical improvement.284 When 
applied in eosinophilic esophagitis or atopic dermatitis, omalizumab 
failed to improve the clinical course despite depletion of IgE.285-287 
Omalizumab was shown to moderately reduce tissue eosinophils in 
the duodenum and gastric antrum but not in oesophagus, while FcεRI 
expression on basophil and dendritic cell as well as free IgE levels 
were all significantly decreased in patients with eosinophilic gastro-
intestinal diseases.288 In patients at risk for geohelminth infections, 
omalizumab therapy was not associated with increased morbidity 
attributable to intestinal helminths.289 Overall, omalizumab has a fa-
vourable safety profile.290

More recently, another high-affinity monoclonal anti-IgE an-
tibody, ligelizumab, has been developed to overcome some of the 
limitations of omalizumab. Although ligelizumab showed superior-
ity in inhibition of IgE binding to FcεRI, basophil activation and IgE 
production by B lymphocytes, it was less potent than omalizumab 
in inhibiting the interaction of IgE with CD23. However, its effect on 
eosinophilia was not studied.291 In a phase II trial, ligelizumab failed 
to demonstrate superiority on the Asthma Control Questionnaire 7 
(ACQ-7) over placebo or omalizumab in severe asthmatics,292 but 
showed potentially promising results in the treatment of chronic 
spontaneous urticaria (CSU) in another clinical study.293 However, its 
final position in the management of CSU in relation to omalizumab 
needs to be established.

Anti-IL-4/IL-13Rα monoclonal antibody—dupilumab
Dupilumab blocks the shared IL-4/IL-13 receptor α-chain and thus 
the activity of IL-13 and IL-4 resulting in an inhibition of type 2 
inflammatory responses. Dupilumab was shown to significantly 
improve clinical outcomes in several type 2 diseases including 
moderate-to-severe eosinophilic asthma,294,295 atopic dermati-
tis,296,297 CRSwNP,239,298,299 perennial allergic rhinitis with comorbid 
asthma300 and eosinophilic esophagitis (EoE).301

Although dupilumab is effective in controlling type 2/eosinophilic 
diseases, transient blood eosinophilia has been reported with dupi-
lumab treatment.295,299 This phenomenon can be explained by the re-
duced expression of IL-4/IL-13-induced VCAM-1 on endothelial cells 
restricting eosinophil adhesion and tissue extravasation,302 as well as 
by the inhibition of the direct effects of IL-4 on eosinophils reducing 
their chemotactic response.303 Moreover, reduction of the chemo-
tactic agent eotaxin-3, VCAM-1 and thymus and activation-regulated 
cytokine (TARC) after dupilumab without simultaneous inhibition 
of eosinophilopoiesis in bone marrow might also reduce eosinophil 
extravasation.304 Additional mechanisms potentially underlying 
dupilumab-induced eosinophilia have been recently described in a 
review by Olaguibel et al.305 Blood eosinophilia has been reported 
in 4.1% of asthma patients on dupilumab treatment which in 4 out 
of 52 patients was associated with worsening of blood eosinophilia 
and the development of chronic eosinophilic pneumonia304 as well 
as eosinophilic pleural effusions and a cardiovascular accident asso-
ciated with atrial fibrillation and (cutaneous) vasculitis in two respec-
tive case reports of uncontrolled asthma.306 Another study reported 
dupilumab-associated eosinophilia in <1% of AD patients which was 
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mainly transient.307,308 In the pathogenesis of dupilumab-associated 
conjunctivitis, reported in 8.6%–22.1% of atopic dermatitis patients, 
a prominent eosinophil influx was demonstrated in the conjunc-
tiva.309 In a recent analysis of 11 dupilumab clinical studies, transient 
eosinophilia was reported in 0–13.6% of the treated patients with 
various diagnosis, it did not affect the efficacy of the treatment and 
was rarely of clinical consequence. Clinical symptoms of associated 
with eosinophilia were rare (7 patients in 4666 dupilumab-treated 
patients) and occurred only in patients with asthma or CRSwNP.310 
Treating physicians should be aware of this side phenomenon and the 
patient should be closely monitor regarding the potential eosinophil-
related morbidity.311 Current update of GINA 2023 suggests not to 
use of dupilumab in patients with current or historic blood eosino-
philia >1500 cells/μL.312

Anti-TSLP monoclonal antibody—tezepelumab
Tezepelumab was studied in atopic dermatitis313 and asthma314 
showing significant reduction of atopic dermatitis severity scores 
and asthma exacerbation rates, respectively, compared to placebo 
irrespective of baseline blood eosinophil counts or total IgE lev-
els in asthma patients. In the phase II randomized double blind 
(CASCADE) study, blocking TSLP (tezepelumab) reduced airway 
submucosal inflammatory cells (eosinophils, neutrophils, T cells 
and mast cells) retrieved from bronchial biopsies.315 In the phase 
III (NAVIGATOR) trial, tezepelumab reduced asthma exacerba-
tion rates, improved asthma control and lung function especially 
in patients with eosinophils ≥300 cells/μL. Furthermore, a signifi-
cant decline in annual asthma exacerbations was also observed in 
patients with eosinophils <300 cells/μL.316 However, in another 
phase III (SOURCE) asthma trial, tezepelumab failed to allow a 
significant OCS dose reduction versus placebo, while an improve-
ment was observed in patients with higher baseline eosinophil 
numbers (≥150 cells/μL).295 Tezepelumab is now registered both in 
the United States and in Europe.

Novel targeted therapies under investigation
Eosinophils express various surface molecules and receptors, for ex-
ample CD52, receptors for TSLP, IL-33, prostaglandin D2 (DP2 or 
previously CRTh2) and Siglec-8, while also releasing cytokines which 
may serve as drug targets in eosinophilic diseases.

Alemtuzumab is a monoclonal antibody targeting CD52 currently 
registered for the treatment of relapsing–remitting multiple sclero-
sis and certain type of leukaemia. CD52 is expressed amongst other 
cells also on eosinophils and the treatment with alemtuzumab led 
to complete haematological response in 10/11 patients with idio-
pathic hypereosinophilic syndrome (I-HES) and chronic eosinophilic 
leukaemia-not otherwise specified (CEL-NOS).317 Repeated bone 
marrow analysis showed a normalized eosinophil percentage (com-
plete remission) in 3, and more than 50% reduction in eosinophil per-
centage (partial remission) in another 3 out of 8 patients. However, 
adverse events were common and related to infusion reactions and 
lymphopenia-related viral infections.318

Targeting DP2 (CRTh2), the prostaglandin D2 receptor, by several 
DP2 antagonists including setipiprant, fevipiprant and timapip-
rant, showed some protection against the allergen-induced late re-
sponse319,320 and significant reduced sputum eosinophils along with 
improvements in lung function in patients with (allergic) eosinophilic 
asthma,321,322 as well as improved nasal and ocular symptoms in 
allergic subjects exposed to grass pollen323 and decreased the oe-
sophageal eosinophil load associated with reduced disease activity 
in patients with eosinophilic esophagitis.324 Two phase III trials of 
fevipiprant (LUSTER-1 and LUSTER-2) only showed very modest ef-
fects on exacerbations in patients with severe asthma, thus lead-
ing to discontinuation of further development of the drug for this 
indication.325

Another potential therapeutic target is Siglec-8, expressed on eo-
sinophils. Chimeric antibodies directed against Siglec-8 were shown 
to reduce IL-5-induced eosinophilia in healthy and eosinophilic do-
nors.326 A single dose of AK002 (lirentelimab), an anti-Siglec-8 an-
tibody, led to a complete depletion of blood eosinophils in healthy 
individuals already 1-h post-dosing and persisted up to 84 days. 
However, the ENIGMA-2 phase 3 trial in patients with eosinophilic 
gastrointestinal disease missed the symptomatic co-primary end-
point (press release by manufacturer).327 However, as the long-term 
consequences of complete depletion of eosinophils are unclear, fur-
ther studies are needed.328

Dexpramipexole, a synthetic aminobenzothiazole, is an orally 
bioavailable small molecule originally developed for treating amy-
otrophic lateral sclerosis (ALS), which was coincidentally shown to 
reduce eosinophils both in peripheral blood and in target tissues. 
Therefore, it has been subsequently tested in eosinophilic diseases 
such as hyper-eosinophilic syndrome329 and CRSwNP with blood 
eosinophilia.330 In CRSwNP patients, dexpramipexole (for 6 months) 
had a favourable safety profile and effectively reduced eosinophils 
both in peripheral blood and in NP-tissue in the majority of patients 
but failed to reduce the nasal polyps' size and to improve upper respi-
ratory symptom scores.330 A recent safety and efficacy study (‘EX-
HALE’) clearly showed a marked reduction of peripheral eosinophils 
in eosinophilic asthma patients.158 Interestingly, the study showed 
a favourable effect on lung function albeit being underpowered for 
this endpoint.

A proof-of concept study investigating an anti-IL-33 antibody 
(etokimab) in atopic dermatitis, reported a marked improvement of 
disease severity associated with a significant decrease of blood eo-
sinophils upon a single administration.331

IL-13 is a key cytokine in type 2 diseases, and eosinophils were 
shown to express the IL-13 receptor and release functional IL-13.61,332 
Several antibodies blocking IL-13 have been/are under clinical inves-
tigation for asthma—for example tralokinumab or lebrikizumab333,334 
and atopic dermatitis.335 Stratification of asthma patients revealed 
best effects on lung function in those with more pronounced type 
2 profile/blood eosinophilia.304 But overall, neutralizing IL-13 alone 
seems to have limited effects on eosinophilic airway inflammation 
and clinical outcomes in asthma while the eosinophil-lowering 

 13989995, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15884 by W

iley, W
iley O

nline L
ibrary on [29/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3091JESENAK et al.

effects are most likely indirect.336 In contrast, more promising re-
sults were shown in atopic dermatitis.337

5.3  |  To completely block or not completely block 
eosinophils—that is the question

Presently, an expanding armamentarium of new drugs targeting 
the eosinophils have been introduced into drug development while 
some of them have entered clinical practice. These targeted drugs 
range from relatively specific for inflammatory eosinophils (Mepoli-
zumab/anti-IL-5) to targeting all IL-5R positive cells including (at least 
to a certain degree) resident eosinophils (Benralizumab/anti-IL-5R). 
Associated with their application in chronic diseases, it is essential to 
understand the ‘cost’ of losing resident (i.e. homeostatic) eosinophils 
from healthy tissues during long-term treatment of type 2/eosino-
philic inflammation (Figure 4).108,256,257,258,338

Historically, eosinophils have been associated with helminthic in-
fections and allergic diseases. As mentioned before, recent evidence 
revealed their important involvement in innate immune responses 
displaying regulatory/dampening effects.5,86 The Local Immunity and/
or Remodelling/Repair (LIAR) hypothesis suggests that resident tissue 
eosinophils secure local homeostasis, prevent remodelling and pro-
mote tissue repair.41 This was supported by a mouse model showing 
the presence of homeostatic resident eosinophils.31 So far, the anti-
IL-5 trials and anti-IL-5R trials recorded limited adverse reactions to eo-
sinophil depletion, but studies were mainly focussed on adult patients. 
Even the longitudinal follow-up studies showed that all the drugs were 

well-tolerated, and no adverse effects of eosinophil depletion were 
reported.344 However, with benralizumab, it has come to notice that 
there is increased incidence of recorded respiratory infections which 
are not apparent with anti-IL-5 neutralising mAb therapies (mepoli-
zumab and reslizumab). Moreover, the increase in infections may not 
be only ascribed to depleted eosinophils, but may also be the effect of 
the depletion of other IL-5R+ cells, such as basophils, involved in host 
defence.82,269 Despite the fact that both anti-IL5 and anti-IL5R showed 
favourable safety profiles with overall similar adverse events (in kind 
and number), future studies should provide further insight how the po-
tential gatekeeper role of eosinophils based on their innate immunity 
involvement as well as their role in tissue homeostasis will be affected 
by long-term deep depletion.

5.4  |  Off-target effects: lessons to be learned?

A worrying finding is that treatment with different immunomodula-
tory drugs can induce rare unforeseen side effects depending on 
the (immune) status of the patient. This rather cryptic issue is best 
illustrated by the effect of anti-IL-5 treatment in patients who suf-
fer from rheumatoid arthritis combined with asthma. Andreev et al. 
have recently described an immune suppressive function of eosino-
phils in joint tissue. In a mouse model of serum-induced arthritis the 
authors describe compelling evidence that eosinophils are involved 
in dampening the inflammatory response in arthritis lesions.345 Im-
portantly, the authors also describe a flare-up in the joints of RA 
patients who were treated with anti-IL-5 therapy. This finding is 

F I G U R E  4  Balancing the potency of eosinophil inhibition in disease and tissue homeostasis. Inhibition of eosinophils, mostly via blocking 
IL-5 and/or its receptor has beneficial in many, predominantly allergic diseases. This IL-5 is produced by several cell types including Th2 
cells339, type 2 innate lymphoid cells340, bone marrow stromal cells341, mast cells342 and even eosinophils.343 The recent appreciation of the 
potential role of eosinophils in tissue homeostasis, outlined in the LIAR hypothesis, indicate a potential risk of the antagonism of resident 
non-inflammatory eosinophils. These cells are responsive to IL-5, but their differentiation in the bone marrow seems independent of this 
cytokine. *only implicated in the mouse. Created with BioRe​nder.com
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supportive of the hypothesis that targeting type 2 inflammation 
can lead to exacerbation of TH1/TH17 inflammation. In addition, to 
off-target effects already described in this review, some more have 
been described in the context of targeting type 2 inflammation. 
These include alopecia, eosinophilic conjunctivitis and decreased 
numbers of goblet cells in the conjunctiva in some patients treated 
with dupilumab.346,347 Taking all these effects into account, it is 
clear that this might not only been seen as off-target, but in many 
instances are unknown or unforeseen effects. Rare side-effects 
associated with type 2/eosinophils targeted therapy might still be 
under the radar. Therefore, it is important to identify as many of 
these apparent off-target/unforeseen effects as possible as they 
might help us understand the pathogenetic mechanisms underlying 
type 2 diseases as well as the molecular mechanisms mediating the 
different targeted type 2/eosinophils treatments.

6  |  CONCLUSIONS AND A LOOK INTO 
THE FUTURE

It is evident, that the traditional concept of understanding eosino-
phils has recently changed in the context of newly unveiled cellular 
functions. Besides well-characterized pro-inflammatory and disease-
driving effects of eosinophils, these cells evidently also possess 
homeostatic, anti-inflammatory and anti-infectious activities. There-
fore, these features need to be considered during the process of se-
lecting therapies that affect eosinophils to various degrees: that is 
from reduction to complete depletion (Table 3). As per the ongoing 
discussion, it is evident that there has been massive advancement 
in eosinophil-targeted therapies. All licenced targeted therapies to 
date have shown a positive treatment effect and improved the dis-
ease burden in patients with eosinophil-driven conditions. However, 

from the perspective of precision medicine, a significant disease bur-
den remains, as evident from the modest reduction in exacerbation 
rates in most reported studies across different eosinophilic diseases. 
There are several studies that highlight predictors of good clinical re-
sponses to biologics, but few of them focus on those patients who 
fail to respond adequately despite targeted treatment. This could be 
due to the involvement of multiple pathways that are activated at the 
same time in the most severe patients. Phenotyping patients based 
on blood eosinophils may not be accurate enough for endotypic tar-
geting. For example, in asthma, using blood eosinophils as a (or the 
only) biomarker often proved inadequate for choosing the right drug 
for the right patient or for efficiently monitoring the therapeutic re-
sponse. Moreover, a paradoxical and often transient increase in blood 
eosinophils can be observed after the initiation of certain mAbs, for 
example dupilumab. It is therefore pertinent to understand the un-
derlying immunology, and possibly, to perform immune endotyping 
of patients before prescribing appropriate treatment. For some pa-
tients, this may implicate a combination of targeted therapies.

AUTHOR CONTRIBUTIONS
Milos Jesenak, Zuzana Diamant, Edward Knol and Leo Koender-
man: Conceptualization; writing—original draft; writing—review and 
editing; supervision. Dagmar Simon, Ellen Tufvesson, Ilja Striz, Sven 
F. Seys and Martina Koziar Vasakova: Conceptualization; writing—
original draft; writing—review and editing. Manali Mukherjee and 
Paige Lacy: Writing—review and editing. Susanne Vijverberg, 
Tomas Slisz, Anna Sediva, Hans-Uwe Simon, Jana Plevkova, Jurgen 
Schwarze, Radovan Kosturiak, Neil E. Alexis and Eva Untersmayr: 
Writing—original draft; writing—review and editing.

ACKNOWLEDG MENTS
None.

TA B L E  3  Possible effect of anti-eosinophil biologics on eosinophil counts in different specimen.

Molecule Mepolizumab Reslizumab Benralizumab Dupilumab Omalizumab Tezepelumab

References [218,219,222,225
,228,229,242,
243,247]

[227,254] [192,261,262,265,268] [241,265,296,299,301,307] [239,276,279,283,287] [315,348,349,350,351]

Target IL-5 IL-5 IL5R IL4/13Rα IgE TSLP

Inhibition of eosinophils Direct Direct Direct Indirect Indirect Direct

Eosinophils in

Peripheral blood ↓↓ ↓↓ ↓↓↓ ↓ (↑a) ↓ ↓↓

Airway/lung tissue ± ↓ ↓↓↓ ↓ ± ↓↓

Sputum ↓ ↓ ↓↓ ↓ ↓ ↓

BALF ↓ ↓ ↓↓ ? ↓ ↓↓

Oesophagus ↓ ↓ ↓b ↓↓ ø ?

Duodenum ø ? ↓↓ ? ↓ ?

Bone marrow ↓ ↓ ↓↓ ø ? ?

Residential lung 
eosinophils

ø ø Possible ↓ ø ø ?

aTransient increase followed by normalizing/decline in the majority of the subjects.
bUnder investigation, available case reports.
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